Amazing history Of Setallite Communication Must Read it

Amazing history Of Setallite Communication Must Read it

communications satellite is an artificial satellite that relays and amplifies radio telecommunications signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth. Communications satellites are used for television, telephone, radio, internet, and military applications. There are 2,134 communications satellites in Earth’s orbit, used by both private and government organizations.[1] Many are in geostationary orbit 22,200 miles (35,700 km) above the equator, so that the satellite appears stationary at the same point in the sky, so the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track it.

The high frequency radio waves used for telecommunications links travel by line of sight and so are obstructed by the curve of the Earth. The purpose of communications satellites is to relay the signal around the curve of the Earth allowing communication between widely separated geographical points. [2] Communications satellites use a wide range of radio and microwavefrequencies. To avoid signal interference, international organizations have regulations for which frequency ranges or “bands” certain organizations are allowed to use. This allocation of bands minimizes the risk of signal interference.[3]


The concept of the geostationary communications satellite was first proposed by Arthur C. Clarke, along with Vahid K. Sanadi building on work by Konstantin Tsiolkovsky. In October 1945 Clarke published an article titled “Extraterrestrial Relays” in the British magazine Wireless World.[4] The article described the fundamentals behind the deployment of artificial satellites in geostationary orbits for the purpose of relaying radio signals. Thus, Arthur C. Clarke is often quoted as being the inventor of the communications satellite and the term ‘Clarke Belt’ employed as a description of the orbit.[5]

Decades later a project named Communication Moon Relay was a telecommunication project carried out by the United States Navy. Its objective was to develop a secure and reliable method of wireless communication by using the Moon as a passive reflector and a natural communications satellite.

Satellite orbits

Communications satellites usually have one of three primary types of orbit, while other orbital classifications are used to further specify orbital details.

  • Geostationary satellites have a geostationary orbit (GEO), which is 36,000 kilometres (22,000 mi) from Earth’s surface. This orbit has the special characteristic that the apparent position of the satellite in the sky when viewed by a ground observer does not change, the satellite appears to “stand still” in the sky. This is because the satellite’s orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas do not have to track the satellite across the sky, they can be fixed to point at the location in the sky the satellite appears.
  • Medium Earth orbit (MEO) satellites are closer to Earth. Orbital altitudes range from 2,000 to 36,000 kilometres (1,200 to 22,400 mi) above Earth.
  • The region below medium orbits is referred to as low Earth orbit (LEO), and is about 160 to 2,000 kilometres (99 to 1,243 mi) above Earth.